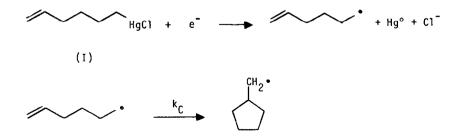
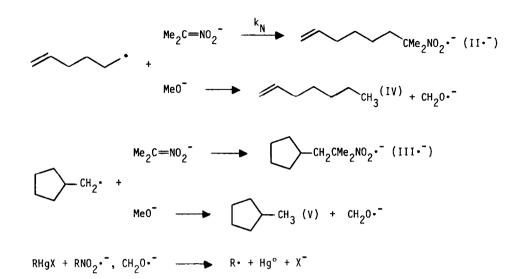
REACTIVITY OF THE 5-HEXENYL RADICAL

TOWARD THE ANION OF 2-NITROPROPANE AND BOROHYDRIDE ANION


Glen A. Russell* and Deliang Guo


Department of Chemistry Iowa State University Ames, Iowa 50011

Summary: The 5-hexenyl radical adds to the anion of 2-nitropropane with a rate constant of ~ 1 X 10^6 L/mol-s at 40°. Hydrogen atom abstraction from BH_4^- occurs more slowly than abstraction from CH_3^{0-} and with a rate constant less than 1 X 10^4 L/mol-s at 30°. The reaction of Δ^{5-} hexenylmercury chloride with sodium borohydride in MeOH/NaOH proceeds via hydrogen abstraction by the hexenyl radical from RHgH and not from NaBH₄.

The addition of radicals to anions plays a key role in $S_{RN}1$ substitution. However, little is known about the rates of these processes in aliphatic systems. We have used the cyclization of the 5-hexenyl radical generated by electron transfer to Δ^5 -hexenylmercury chloride to measure the rate constant for the reactions of a l³-alkyl radical with Me₂C=NO₂⁻ or MeOH/1 <u>M</u> NaOH and to set a limit on the reactivity of BH_a⁻ with alkyl radicals (Scheme 1).

Scheme 1

In the S_{RN}1 chain reaction of I with $Me_2C=NO_2^{-M^+,1}$ the ratio of II/III increased linearly with $[Me_2C=NO_2^{-}]$. Using the value of k_c of 1.7 X 10^5 s^{-1} at $40^{\circ}C^2$ yields the data of Table 1.

Table 1. Rate Constants for Trapping the Δ^{5} -Hexenyl Radical by Me₂C=NO₂^{-M+} at 40°C.

м ⁺	Solvent	k _N (L∕mol-s)
Li ⁺	Me ₂ SO	0.3 X 10 ⁵
Bu ₄ N ⁺	Me ₂ S0	0.9 X 10 ⁵
Li ⁺	НМРА	0.36 X 10 ⁵
Bu ₄ N ⁺	НМРА	0.75 X 10 ⁵

As expected, ion-pairing with Li⁺ decreases the reactivity of $Me_2C=NO_2^-$ towards radical attack.³ Although the anion of 2-nitropropane possesses only a modest reactivity, direct competitive experiments indicate that $Me_2C=NO_2^-$ is much more reactive towards alkyl radicals than other simple anions such as (EtO)₂PO⁻, CN⁻, (MeO₂C)₂CH⁻, RCO₂⁻ or N₃⁻.

Recently Singh and Khanna have suggested that the reduction of alkylmercury halides by LiAlH₄ involves an electron transfer chain mechanism of the S_{RN}^{1} -type involving attack of R⁻ upon AlH₄⁻ (reactions 1 and 2).⁴ A similar process is possible for the reaction with BH₄⁻

$$R + A H_4 \longrightarrow R + A H_3$$
 (1)

$$A1H_3 \cdot + RHgX \longrightarrow A1H_3 + R \cdot + Hg^\circ + X^-$$
(2)

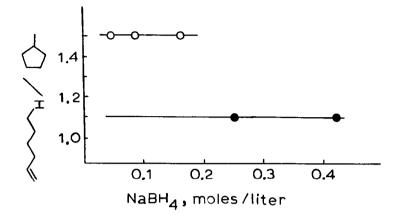


Figure 1. Ratio of 1-hexene/methylcyclopentane formed in the sodium borohydride reduction of Δ^5 -hexenylmercury chloride initially 0.05 M (\odot) and 0.09 M (\odot) in MeOH/1 M NaOH at 30°C.

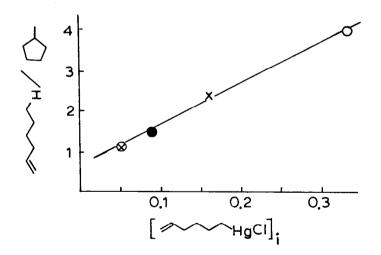


Figure 2. Ratio of 1-hexene to methylcyclopentane formed in the reaction of Δ^5 -hexenylmercury chloride with sodium borohydride at 30°C in methanol containing 1 M sodium hydroxide: \bigcirc , 0.5 M NaBH₄; X, 0.26 M NaBH₄; \bigcirc , 0.05, 0.10, 0.17 M NaBH₄.

since the presence of alkyl radicals in this reduction have been thoroughly established.^{5,6} However, we have found that the homogeneous reduction of I by BH_4^- in MeOH/1 <u>M</u> NaOH yields a ratio of 1-bexene/methylcyclopentane (IV/V) which is independent of the concentration of BH_4^- (Figure 1). The occurrence of reaction 1 with BH_4^- would require that this ratio should increase with the concentration of BH_4^- . The ratio of IV/V does increase with the concentration of I as shown in Figure 2. This observation eliminates the S_{RN}1 chain in the reaction of RHgX with BH_4^- and is consistent with a mechanism involving the intermediacy of RHgH (reactions 3-5). From the slope of Figure 2 and with a value of k_{Γ} of 1.25 X 10⁵ s⁻¹ at 30°C, a value of

RHgC1 + NaBH₄
$$\longrightarrow$$
 RHgH + NaBH₃C1 (3)
R• + RHgH $\xrightarrow{k_{\text{H}}}$ RH + RHg• $\xrightarrow{k_{\text{H}}}$ R• + Hg° (4,5)

 $k_{\rm H}$ of 2.6 X 10⁶ L/mol-s is required. The absence of any effect of [BH₄⁻] in the ratio of IV/V requires that reaction (3) must be fast and complete. The reaction of 1-hexenyl radical with BH₄⁻ cannot be greater than 10⁴ and is probably less than 10³ L/mol-s.

The intercept of Figure 2 gives a measure of the hydrogen donor ability of the solvent system (MeOH/1 \underline{M} NaOH). A pseudounimolecular rate constant of 7 X 10⁴ s⁻¹ and an approximate rate constant for hydrogen atom abstraction from CH₃O⁻ of no more than 1 X 10⁶ L/mol-s at 30°C is indicated. Although alkyl radicals can abstract a hydrogen atom from NaBH₄,⁷ it appears that this reaction is ineffective in competition with hydrogen abstraction from RHgH or MeOH/1 \underline{M} NaOH and perhaps occurs much less readily than attack upon AlH₄^{-14,8}

Acknowledgment: This work was supported by grant CHE-8119343 from the National Science Foundation.

References

- (1) G. A. Russell, J. Hershberger, and K. Owens, J. Am. Chem. Soc., 101, 1312 (1979).
- (2) D. Griller and K. U. Ingold, Acc. Chem. Res., 13, 317 (1980).
- (3) G. A. Russell, F. Ros and B. Mudryk, J. Am. Chem. Soc., 102, 7601 (1980).
- (4) P. R. Singh and R. K. Khanna, Tetrahedron Lett., 1411 (1983).
- (5) G. M. Whitesides and J. San Filippo, Jr., J. Am. Chem. Soc., 92, 6611 (1970); C. L. Hill and G. M. Whitesides, <u>ibid.</u>, 96, 870 (1974).
- (6) R. P. Quirk and R. E. Lea, Tetrahedron Lett., 1925 (1974).
- J. A. Barltrop and D. Bradbury, <u>J. Am. Chem. Soc.</u>, **95**, 5085 (1973); J. T. Groves and K. W. Ma, <u>ibid.</u>, **96**, 6527 (1974).
- (8) S.-K. Chung and F.-f. Chung, <u>Tetrahedron Lett.</u>, 2473 (1979); S.-K. Chung, J. Org. Chem., 45, 3513 (1980).; S.-K. Chung and K. L. Filmore, <u>J. Chem. Soc., Chem. Commun.</u>, 358 (1983); P. R. Singh, A. Nigam and J. M. Khurana, <u>Tetrahedron Lett.</u>, 21, 4753 (1980); P. R. Singh, J. M. Khurana and A. Nigam, <u>ibid.</u>, 22, 2901 (1981).

(Received in USA 9 May 1984)